

Space Utilization

Not just for classrooms anymore

Annie Newman Shepley Bulfinch Bob Boes

Who's heard this?

- Campus research space is significantly overcrowded.
- I'm sure that <your choice here> is hoarding space.
- We just build two buildings; how can we be out of space?
- We can solve this if we tighten space standards.
- Why can't we use old warehouse for the neuroscience grant?

The strategic view

Identify your institution's strategic business goals, e.g.

- Enrollment
- Research direction
- Strategic academic plans
- Capital project strategy
- Relate space analysis specifically to those goals
- Where do you have leverage to further those goals?
 - Labs
 - Offices

What can you really work with?

Leverage

Data taken from a study of 76 Colleges and Universities with enrollments less than 6,000 students

Data taken from a benchmark of 13 doctoral/research institutions ranging from 3.4M – 12M GSF

Introduction

Narrow the focus further

Some lab space is relatively untouchable...

- Teaching Labs
- Research Labs
- Open Labs
- Highly specialized spaces (e.g. clean rooms, FMRI suites)
- Undergraduate vs. Graduate
- Offices
 - Physical Reality vs. Guidelines

- Accurate, complete, consistent data
- Utilization metrics
- Continuous space analysis
- Supportive space policies
- Integrated space, academic, & capital planning

Assess Current Situation

8

Building a space inventory

Analyze best sources of information

(finance, HR, IT, security, plant

operations...)

- Assignable space first consider residential life and athletics last
- Create a plan that produces results and build on it over time
- Partner with departments that have money to spend
- It's not rocket science start with simple spreadsheets and move to CAFM when the time is right
- Determine the best group to own and maintain the data and drawings

Facilities Inventory and Classification Manual (FICM)

US Dept. of Education National Center for Education Statistics (NCES)

- Basic Principals
- Room Type Definitions
- Room Use Codes
- Function Taxonomy
- Area Measurement Standards

Free download from NCES: http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=92165

Refining room types

- What have you really got?
- FICM definitions can and should be adapted
- Consider finer room type definitions or additional
- descriptive fields:

Offices Faculty: Tenure track Visiting Adjuncts Emeriti Senior Administration Professional Staff Clerical Staff Technical Staff Student Employees Student Organizations	Wet Labs Dry Labs Core Labs	In Vitro (cells, tissue) In Vivo (live animals) Chemical Computationa Imaging Cognitive Shared space, often equipment-intens	Teaching Labs	Wet sciences Dry sciences Social sciences Art studios Music classrooms Dance studios
---	-----------------------------------	---	----------------------	---

Examples of basic analysis

Square footage by room type, department, building

Average areas by room type, department, building

- PI research area / number of staff reporting to PI
- Research revenue per square foot (caution)
- Rolling window: reno expenditures / replacement value

Educate your community

- Often very different perspectives
 - The Principal Investigator
 - The local space banker (dean, dept. head)
 - The desperate planner
 - The federal auditing agency
- Assigned space vs. available space
- Highest-best use
- The limits of planning standards
- Why the request and allocation process is critical

Highest-best use of rooms

- All square feet (meters) are not created equal
- Rooms evolve over time
- Differentiate "as-designed," "as-used," and "best use"
- Align the institutional direction with hard inventory facts

Utilization Management

- Search for quick, low cost opportunities
- Understand and document unassigned & underutilized space
- Develop quick metrics based on:
 - A space planner's view
 - A federal auditor's view (audits getting tougher)
- Conduct annual room-by-room audits

Types of Metrics

- Benchmarking
- Planning standards
- State guidelines
- Institutional standards

Benchmarking

- Value vs. effort
- The difficulty of obtaining data
- Apples vs. oranges
- Be cautious about self-reported data
- Know how participant data was collected and cleaned

Comparing against benchmarking

Metrics

Planning Standard Examples	Use	Additional sorts	Comments
NASF / person	lab, office	department, school	
NASF / rank or position	office	department, school	
NASF / Principal Investigator	lab, office	department, school	
Research \$ / NASF	lab	PI, department, school (check IR)	caution
Lab NASF / occupant	lab	lab type, type of science	
(Lab NASF / person) / Research \$	lab		
Time utilization (seats, week hours)	lab		
Class lab seats / students	lab		

Relative cost of tightening planning standards

- High cost / foot unless done in context of major renos
- Long time-frame
- Can have a high political cost
- Offices and labs offer far more leverage than classrooms
- Facilities may already be tightening standards in new projects

Migrating office space standards

Metrics

Comparing against typical values

State guidelines

Office Space Standards (for analysis purposes, upper value used when ranges given)

		Cal State	Central	Colorado-				
	Arkansas	Stanislaus	Conn State	Boulder	Cornell	CPHE	Dalhousie	Georgetown
President		300			400			600
VP/Dean		200	150	200	320		301	350
Assist/Assoc Dean/VP		180	150	150	280		129	250
Academic Dept Head	180	150	150	150	200		193	150
Nonacademic dept head	180		150	150	160			200
Faculty	135		120	120	180	160	118	150
Administrator/Professional Staff	135	110	120	120	120	110	129	150
GA	60	60		60	50			
Clerical	90	80	120	80	80	80	56	
Office Support						6		

Comparing against planning guidelines

Space Use	Space Use Code	Actual existing ASF	Calculated ASF for Fall 2006	Calculated ASF for Fall 2012 Projection	CE FPI formula used
Open Lab.	220,225,235	6,411	8,869	10,006	ASF = Space Factor x Fall FTE
9.4	- 110 - 12 v				ASF = 4.9 x 1,810
D	250 255	212 057	205 000	205 200	
Research Lab.	250,255	243,637	303,600	385,200	ASE = A00 y 764
	12			ar 51	ADI = 400 x 7 04
Office & Conf.Room	310, 315 & 350, 355	606.061	446.590	502,275	ASE = Space Factor x (FTE Faculty & Staff Requiring an office)
					ASF = 185 x (764+1,650)
Study Space	410	10,295	23,510	26,700	ASF = Space Factor 35 x (variable %age of FTE + variable%age of FTEF)
		s	-	a	ASF = 35 x (35% of 1,810 + 5% of 651)
		1.120	0.004	0.001	
Study Service	455	1,168	2,821	3,204	ASE = Study Space ASE x variable %age
			-		ASE = 12% 0123,510
Processing Room	440	2 085	7 / 198	7 498	ASE = Stack Space(420 +430) v variable%ages
1 rocessing recom		2,005	1,450	1,450	ASF = 18% of 41.654
and Press				1	
Athletic	520,523,525	13,506	50,000	50,000	ASF = Core for FTE up to 3000
AU 263203 989610] /////////////////////////////////////	ASF = 50,000
			data da forma	l l	
Media Production	530,535	4,946	1,810	2,042	ASF = Space Factor x Fall FTE
					ASF = 1 x1,810
Demonstration	550 555	04	404	204	ARE - Reaso Faster y Fall FTF
Demonstration	550,555	91	101	204	
Animal Quarters	570, 575	66,771	10,860	12,252	ASE = Space Factor x Fall FTE
		,	,		ASF = 6 x 1 810
Assembly	610,615	5,678	14,000	14,000	Assembly Space = Core for FTE up to 5,000
					Assembly Space = 14,000
		0.007		0.050	
Lounge	650,655	9,907	6,958	8,052	I total Lounge ASF = (Space Factor x Fall FTE) + (Space Factor x Fall FTEF)

Department	Number of faculty	% of total # of faculty	Dept. SF / # of faculty	% +/- average
			" of laboury	urerage
Ocean	9.5	12%	1,943.16	43%
Civil	12	15%	1,846.92	35%
Chemical	12	15%	1,446.92	6%
Industrial	7	9%	1,441.43	5%
Mechanical	15.5	19%	1,412.32	4%
Electrical	25	31%	818.16	-40%
Total	81			
Average			1,363.22	

Some other things to check

- Centrally- vs. departmentally-scheduled classrooms
- Space "loans" across organizational boundaries
- Institutional memory of loans and allocation promises
- Space devoted to highly specialized equipment
- Amount of highly specialized space (e.g. clean rooms)
- Quality of fit of program to space. For example:

A lab is not a lab is not a lab...

Nor do all offices have the same rules:

- Assignment vs. occupancy vs. utilization
- 2nd (or 3rd) offices
- Emeriti
- Nobel Prize winners

Realistic supply and demand

- Available space = inventory x utilization rate
- Defined need vs. programming formulae
- Jurisdictional envelopes
- Demand prioritization on the way up
- Annual capital budget cycles
- Space demand forecast process

Space audits

Audit Types

- Inventory accuracy (partitions, room type)
- Occupying department (self-reported?)
- Basic utilization
- Appropriate use
- Condition
- Audit frequency
- Audit photos
- Efficient data handling techniques
- Track audit GSF / day

Quick utilization audits

- Use on targeted subset of rooms
- Goal: ≤ 30 seconds per room
- Identifies underutilization ranges
- Criteria of interest to both planners and federal auditors
- Basis for further investigation, not an indictment (many justifiable cases)
- Compare to sponsored research cost recovery room lists

Code	Utilization Audit Checklist
0	Fully occupied
V	Vacant
Р	Limited personnel in rooms
E	Limited equipment present and/or functioning
S	Significant space taken up by packing cases or other storage material
U	Use discrepancy (e.g. lab used as office)
Ι	Inappropriate materials (ping pong tables, couches in labs, arcade games
D	Considerable disarray , trash on floor or work surfaces, heavy dust

Audits

Research space utilization audits

Who makes space decisions on your campus?

- Space Committee
- Provost
- President
- Dean
- Whoever played golf with the President last
- Nobody
- Anybody
- It depends

Policies protect the institutional prerogative

Strategic space policies

- Differentiate ownership vs. occupancy
- Annual space and capital planning
- Formal space change process
- Mandated space inventory
- Tactical management policies
 - Reallocation of underutilized space
 - Space request and allocation process
 - Control of partition and MEP changes
- Data integration policies
 - Mandatory common taxonomy
 - Explicitly assigned responsibility for data sources
 - Business planning for any integration

Some key control points

- Central request and allocation process
- Jurisdictional envelopes
- Departmental space plans
- Single campus source for basic space data
- Continuous utilization monitoring
- Building code compliance process
- Integration with strategic academic planning

Policies and Politics

- Visiting and adjunct professors unique needs and requirements
- Emeriti and 2nd offices for professors implement policies to take back the spaces when they are needed
- Again, focus on highest best use
- Suitability and utilization ratings for spaces in question
- Ranks of the occupants of spaces on campus
- Distill job types to a list short enough to use in analysis
- Be aware of contract employee space requirements
- Without political muscle don't bother trying to make your case.

Policies and politics, cont.

- What is the cycle of review for research space?
- If looking at \$ / SF, do you look at one year or an average of multiple years?
- Research expenditures vs. total grant award?
- How soon after funding loss do you think about taking space back?

Articulate the cost of underutilization

- Acquisition or replacement cost vs. better utilization
- Impact on recruitment, retention, and enrollment
- Constraint of program growth or new initiatives
- Analyze and explain current occupancy patterns
- Problematic business cases for new capital projects
- Optimize sponsored research cost recovery while ensuring an audit-ready stance

Numbers that get attention

<n> Underutilized ASF x 1.5 x <construction cost rate>

- For a 5,000,000 GSF Campus:
- Lab & Office space ≈ 1,250,000 GSF (about ¼ of campus)
- New construction cost = \$800 / GSF (or, \$800,000 per 1,000 GSF)
- 1% underutilized lab & office space = 12,500 GSF
- New construction cost: 12,500 x \$800 = \$10,00,000

Put underutilization in perspective

Factors In Space Needs Forecasting Research Total Revenue Campus In \$M Area (GSF) \$110 **Perceived Space** Hypothetical Demand In New Building **Excess of Inventory** New Bio-Tech (50-250K ASF) 100-**4M** Bldg (100-150K sf) 90-3.3M 80 -**3M** Potential 70-Underutilization 58,270 ASF Research 87,405 GSF **Revenue** 60 -50 -**2M** ONR AUDITORS SPACE AUDIT BY ONR **IN RESIDENCE** 40 **1M Campus Space Inventory** (At present, 3.3M GSF) Present 1 2 YEARS 3 5 4

Selling the Results-

If your institution really wants to manage space:

"Data and reporting don't change business practice and process. Policy does."

The basis for change

- A real need for institutional leadership
- Articulation of current situation
- Interpreted analyses supported by trusted data
- Acknowledgement of common problems
- Differentiation of "ownership" and occupancy
- Shared problems require shared solutions

Selling the Results-

44

Some Take-Aways

- Develop defendable, compelling data
- Steal data from anyone
- Always question benchmarked data
- Walk your space
- Beware of self reported data
- http://www.scup.org/resources/topic_issue/managing-space.html